Jumat, 19 April 2019

The Four Industrial Revolutions

The Four Industrial Revolutions
Industrial Revolutions is defined as the changes in manufacturing and transportation that began with fewer things being made by hand but instead made using machines in larger-scale factories.

The First Industrial Revolution – 1765
Following a slow period of proto-industrialization, this first revolution spans from the end of the 18th century to the beginning of the 19th century. It witnessed the emergence of mechanization, a process that replaced agriculture with industry as the foundations of the economic structure of society. Mass extraction of coal along with the invention of the steam engine created a new type of energy that thrusted forward all processes thanks to the development of railroads and the acceleration of economic, human and material exchanges. Other major inventions such as forging and new know-how in metal shaping gradually drew up the blueprints for the first factories and cities as we know them today.

The Second Industrial Revolution – 1870
Nearly a century later at the end of the 19th century, new technological advancements initiated the emergence of a new source of energy: electricity, gas and oil. As a result, the development of the combustion engine set out to use these new resources to their full potential.  Furthermore, the steel industry began to develop and grow alongside the exponential demands for steel. Chemical synthesis also developed to bring us synthetic fabric, dyes and fertilizer. Methods of communication were also revolutionized with the invention of the telegraph and the telephone and so were transportation methods with the emergence of the automobile and the plane at the beginning of the 20th century. All these inventions were made possible by centralizing research and capital structured around an economic and industrial model based on new “large factories” and the organizational models of production as envisioned by Taylor and Ford.

The Third Industrial Revolution – 1969
Nearly a century later, in the second half of the 20th century, a third industrial revolution appeared with the emergence of a new type of energy whose potential surpassed its predecessors: nuclear energy. This revolution witnessed the rise of electronics—with the transistor and microprocessor—but also the rise of telecommunications and computers. This new technology led to the production of miniaturized material which would open doors, most notably to space research and biotechnology. For industry, this revolution gave rise to the era of high-level automation in production thanks to two major inventions: automatons—programmable logic controllers (PLCs)—and robots.
The first industrial revolution used water and steam to mechanize production, the second used electric energy to create mass production and the third used electronics and information technology to automate production. Today a fourth industrial revolution is underway which builds upon the third revolution and the digital revolution that has been taking place since the middle of the last century. This fourth revolution with exponential expansion is characterized by merging technology that blurs the lines between the physical, digital and biological spheres to completely uproot industries all over the world. The extent and depth of these changes are a sign of transformations to entire production, management and governance systems.

Impact
The social impact of industrialization was profound. For the first time since the Neolithic Revolution, people worked outside of the local environment of their homes. They arose every morning and traveled to their place of employment. This was most often in a workplace known as a factory. The new machinery of the Industrial Revolution was very large and sometimes required acres of floor space to hold the number of machines needed to keep up with consumer demand.

As in all productive revolutions, skill greatly determined the quality of life. The most important aspect of this new economic order was the fact that the skills needed to succeed were in many ways different from those that had been needed in the earlier economy. Artisans had the easiest time transitioning to the new economic paradigm. The fact that they had highly developed manual skills enabled them to adapt to the new machinery much easier than their agricultural counterparts. This was also the case when it came to dealing with the new, enclosed work environment and strict schedules. The worker from the countryside had over the centuries constructed a cycle of labor that followed the seasons. There were times, especially during planting and harvesting, when he was expected to put in long hours, usually from sunrise to sunset. The term "harvest moon," which today is looked upon as a quaint metaphor for autumn celebrations, was in preindustrial Europe a much-needed astronomical occurrence that allowed the farmer extra time to harvest his crops. In turn, the long winter months were a relatively easy time. The lack of electricity and central heating kept most people in bed ten to twelve hours a day, affording them relief from the busy periods of planting and harvesting.

The Fourth Industrial Revolution
The First Industrial Revolution used water and steam power to mechanize production. The Second used electric power to create mass production. The Third used electronics and information technology to automate production. Now a Fourth Industrial Revolution is building on the Third, the digital revolution that has been occurring since the middle of the last century. It is characterized by a fusion of technologies that is blurring the lines between the physical, digital, and biological spheres.

There are three reasons why today’s transformations represent not merely a prolongation of the Third Industrial Revolution but rather the arrival of a Fourth and distinct one: velocity, scope, and systems impact. The speed of current breakthroughs has no historical precedent. When compared with previous industrial revolutions, the Fourth is evolving at an exponential rather than a linear pace. Moreover, it is disrupting almost every industry in every country. And the breadth and depth of these changes herald the transformation of entire systems of production, management, and governance.

The possibilities of billions of people connected by mobile devices, with unprecedented processing power, storage capacity, and access to knowledge, are unlimited. And these possibilities will be multiplied by emerging technology breakthroughs in fields such as artificial intelligence, robotics, the Internet of Things, autonomous vehicles, 3-D printing, nanotechnology, biotechnology, materials science, energy storage, and quantum computing.

Sumber :
https://www.yourdictionary.com/industrial-revolution
http://mukhtarmirakel.blogspot.com/2019/04/the-four-industrial-revolution.html
https://www.weforum.org/agenda/2016/01/the-fourth-industrial-revolution-what-it-means-and-how-to-respond/
https://www.salesforce.com/blog/2018/12/what-is-the-fourth-industrial-revolution-4IR.html

Tidak ada komentar:

Posting Komentar